Unterrichtseinheit	Semester
Ozeane – Wenn die Meere sauer werden	

Bezug zu den Themenfeldern

Umweltbereich Wasser und Luft

Kompetenzaufbau

- Schwerpunkt im Kompetenzbereich Fachwissen/ Fachkenntnisse: Chemische Gleichgewichte und ihre Beeinflussung (MWG, Säure-Base-Gleichgewicht)
- Schwerpunkt im Kompetenzbereich Erkenntnisgewinnung/ Fachmethoden: Experimente und Modellexperimente zum chemischen Gleichgewicht und seiner Verlagerung am Beispiel Kohlenstoffdioxid und Wasser
- Schwerpunkt im Kompetenzbereich Kommunikation:
- Schwerpunkt im Kompetenzbereich Bewertung / Reflexion: Anwenden der im Unterricht vermittelten Kenntnisse auf Umweltfragen, Entwicklung einer eigenen Position zur Kohlenstoffdioxidspeicherung aus chemischer Sicht (CCS)

Grober Verlauf

Einstieg: Probleme der Menschheit, aktuelle Klimadiskussion

Block I: Ozeane - CO₂ – Speicher der Menschen?

- Treibhauseffekt,
- Tabelle zur CO₂- Bilanz

SuS äußern Hypothesen zum Verbleib von CO₂, im Unterrichtsgespräch wird erarbeitet, dass CO₂ u.a. von den Ozeanen aufgenommen wird und dort zu Kohlensäure reagiert, SuS formulieren Fragen zu den Folgen dieser Reaktion, Hörbeitrag zur Versauerung der Meere.

Block II: Reversible Reaktionen und Massenwirkungsgesetz am Beispiel von

- Entwickeln von Fragestellungen anhand des Hörbeitrags "Wenn die Meere sauer werden" (DLF): z.B. Wie sauer kann das Meer werden?
- Planen und Durchführen von Experimenten zur Bestimmung der Löslichkeit von CO₂
- Vorstellung der Ergebnisse und Feststellen der unterschiedlichen Ergebnisse (kognitive Dissonanz)
- Klären der Prozesse: Physikalisches Lösen, chemisches Lösen und die Protolysegleichungen (1. und 2. Dissoziationsstufe)
- Einführung reversibler Reaktionen am Beispiel des Mineralwassers
- Einführen des Massenwirkungsgesetz mithilfe des Holzapfelkriegs oder des Stech-Heber-Versuchs
- (mögliche Ergänzung) Einführung der Säurekonstante am Beispiel der Kohlensäure

Block III: Die Verlagerung von chemischen Gleichgewichten am Beispiel von Kohlenstoffdioxid

- Entwickeln von gezielten Fragestellungen und planen von Experimenten
- Beeinflussung des chemischen Gleichgewichts durch Temperatur, Druck, Konzentration und Salzgehalt z.B. durch "Lernen an Stationen" oder arbeitsteiliger Gruppenarbeit (Expertenpuzzle)
- Erkennen der allgemeinen Gesetzmäßigkeit, dass ein von außen auf ein geschlossenes System ausgeübter Druck zu Verschiebungen des Gleichgewichts führt (Le Chatelier)
- Maritimes F\u00f6rderband zur Anwendung bzw. Festigung

Ergebnis: Rückführung auf die eingangs aufgeworfenen Fragen

Kompetenzbereich Fachwissen / Fachkenntnisse Die Schülerinnen und Schüler		
BK Stoff – Teilchen	beschreiben den Stoffumsatz bei chemischen Reaktionen am Beispiel der Reaktion von Kohlenstoffdioxid und Wasser.	
BK Struktur – Eigenschaft		
BK Donator – Akzeptor	 erläutern die Säure-Base-Theorie nach Brönsted anhand von korrespondierenden Säure-Base-Paaren und verwenden den Begriff Oxonium-Ion verwenden in Experimenten Säure-Base Indikatoren 	

BK Kinetik und chemisches Gleichgewicht	 Dekontextualisierung: differenzieren starke und schwache Säuren bzw. Basen anhand der pK_S-und pK_B-Werte erklären die Neutralisationsreaktion beschreiben Indikatoren als schwache Brönsted-Säuren oder Base (eA) deuten qualitativ Puffersysteme mit der Säure-Base-Theorie nach Brönsted erklären den Zusammenhang zwischen der Autoprotolyse des Wassers und dem pH-Wert anhand der Kohlenstoffdioxid-Bilanz (Kohlensäure) beschreiben das chemische Gleichgewicht auf Stoff- und Teilchenebene mithilfe eines Modells (z.B. Holzapfelkrieg, Stechheberversuch) unterscheiden zwischen der Einstellung des Gleichgewichts und dem chemisch dynamischen Gleichgewichts unter Berücksichtigung der Definition der Reaktionsgeschwindigkeit formulieren das Massenwirkungsgesetz und verwenden die Gleichgewichtskonstante führen verschiedene Experimente zu den Einflussfaktoren auf das chemisch dynamische Gleichgewicht durch und leiten das Prinzip von Le Chatelier ab. Ggf.: beschreiben, dass Katalysatoren die Einstellung des chemischen Gleichgewichts beschleunigen. Dekontextualisierung: Kennen die Begriffe und Zusammenhänge zwischen: K_S, pK_S, K_B, pK_B (eA) Puffer, Puffergleichgewichte als Säure-Base-Gleichgewichte (eA)
BK Energie	• -

Kompetenzbereich Erkenntnisgewinnung / Fachmethoden

Die Schülerinnen und Schüler...

- ermitteln den Stoffumsatz bei chemischen Reaktionen am Beispiel der Reaktion von Kohlenstoffdioxid und Wasser.
- planen Experimente zur Ermittlung von Stoffeigenschaften am Beispiel der Löslichkeit von Kohlenstoffdioxid in Wasser und führen diese durch
- nutzen ihre Kenntnisse zur Erklärung von Stoffeigenschaften (Löslichkeit)
- messen den pH-Wert von Leitungswasser und Mineralwasser
- formulieren mehrstufige Protolysegleichungen
- planen ein Experiment zur Überprüfung der Löslichkeit
- leiten anhand eines Modellversuchs Aussagen zum chemischen Gleichgewicht ab.
- übertragen den Holzapfelkrieg auf das Massenwirkungsgesetz und führen Berechnungen durch (eA)
- berechnen Gleichgewichtskonstanten und –konzentrationen (lonenprodukt des Wassers) in wässrigen Lösungen (eA).
- Dekontextualisierung:
 - führen Titrationen durch und interpretieren qualitativ und quantitativ (eA)
 Kurvenverläufe
 - Verwenden Tabellen zur Berechnung von pH-Werten und Konzentrationen, zur Vorhersage von Reaktionen
 - o wenden den Zusammenhang zwischen pK_S-, pK_B- und pK_W-Wert an (eA).
 - o stellen Pufferlösungen her ermitteln die Funktionsweise
 - berechnen charakteristische Punkte der Titrationskurven einprotoniger Säuren (eA).
 - ermitteln grafisch den Halbäquivalenzpunkt (eA).
 - o wenden die Henderson-Hasselbalch-Gleichung an (eA).

Kompetenzbereich Kommunikation

Die Schülerinnen und Schüler...

- wählen aus einem Hörbeitrag geeignete Informationen aus
- recherchieren Namen und Verbindungen in Tafelwerken
- diskutieren die Grenzen und Möglichkeiten der Anschauungsmodelle am Beispiel des Holzapfelkrieges und des Stech-Heber-Versuchs
- stellen Protolysegleichgewichte dar
- ggf. Recherche zu CCS Carbon catch storage
- argumentieren zur CO₂-Problematik mithilfe des MWGs

beschreiben mathematisch Beeinflussungen des Gleichgewichts anhand des Massenwirkungs-gesetzes (eA).

- Dekontextualisierung:
 - o argumentieren sachlogisch unter Verwendung von pK_S-Werten
 - o stellen Messwerte als Titrationskurve dar, präsentieren und diskutieren über diese
 - o werten Titrationskurven in Hinblick auf den Pufferbereich aus (eA)
 - stellen Puffergleichgewichte in Form von Protolysegleichungen, Henderson-Hasselbalch-Gleichung und Abschnitten von Titrationskurven dar und verknüpfen diese (eA)
 - recherchieren exemplarisch zu Puffergleichgewichten in Umwelt und biologischen Systemen und präsentieren ihre Ergebnisse

Kompetenzbereich Bewertung / Reflexion

Die Schülerinnen und Schüler...

- erkennen und beschreiben die gesellschaftliche Relevanz und Bedeutung von Stoffen in ihrer Lebenswelt
- reflektieren Alltagszusammenhänge anhand stöchiometrischer Berechnungen
- beurteilen und bewerten wirtschaftliche Aspekte und Stoffkreisläufe
- ggf. reflektieren den historischen Weg der Entwicklung des Säure-Base-Begriffs bis Brönsted
- beurteilen die Steuerung chemischer Reaktionen
- bewerten pH-Wert Angaben im Alltag und im Hinblick physiologischer Aspekte
- Dekontextualisierung:
 - o erkennen und beschreiben die Bedeutung von Titrationen
 - erkennen und bewerten Puffergleichgewichte in der Umwelt und in biologischen Systemen

Erweiterungsmöglichkeiten

- Diese UE sollte im Anschluss um die Aspekte Säuren und Basen in Alltags-, Technik- und Umweltbereichen ergänzt werden.
- Modellexperimente zum Treibhauseffekt
- Recherche zur globalen Treibhausproblematik
- CCS
- Löslichkeitsprodukt am Beispiel der Carbonate
- Weitergehende Betrachtungen zum Klimawandel
- Politische Diskussionen zum Klimawandel

Anregungen für Lehr- bzw. Lernmethoden

Schülerexperimente Lernen an Stationen Arbeitsteilige Gruppenarbeit Expertenrunde (Referate) Podiumsdiskussion

Materialien und Fundstellen

auszufüllen je nach Schulausstattung, z.B. Medien, Literatur, Software, Modelle

Ungefährer Zeit
Bedarf
ca. 8 Wochen bei 4-stündigem Unterricht, entsprechend mehr bei Übungen und Erweiterungen
(Dekontextualisierungen)
Möglichkeiten zur Leistungsbewertung
Gruppenarbeit
Klausur
(Referat)
Bemerkungen